skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cerep, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the nonlinear effects of minimally coupled, massless, cosmological scalar fields on the cosmic microwave background (CMB). These fields can exhibit post-recombination parametric resonance and subsequent nonlinear evolution leading to novel contributions to the gravitational potential. We compute the resulting contributions to the CMB temperature anisotropies through the time-variation of the gravitational potential (i.e., the integrated Sachs-Wolfe (ISW) effect). We find that fields that constitute 5% of the total energy density and become dynamical at zc≃104 can produce marginally observable ISW signals at multipoles ℓ≃2000. Fields that become dynamical at earlier times and/or have initial displacements at a flatter part of their potential, produce ISW contributions that are significantly larger and at higher multipoles. We calculate these dynamics and the resulting evolution of gravitational perturbations using analytic estimates alongside detailed nonlinear lattice simulations, which couple scalar fields and cosmological fluids to a perturbed metric. Finally, we discuss the possibility of detecting these features with future high-resolution CMB observations. 
    more » « less